American University of Beirut
 Department of Electrical and Computer Engineering EECE 210 - Electric Circuits - Fall 2018 Quiz 1 Solutions

Problem 1 (4 pts)

If $\mathrm{R}=8 \mathrm{k} \Omega$, find the equivalent resistance, R_{AB}.

$\mathrm{R}_{\mathrm{AB}}=((((((12 / / 4)+9) / / 6)+4) / / 8) / / \mathrm{R})+2$
$\mathrm{R}_{\mathrm{AB}}=(((((3+9) / / 6)+4) / / 8) / / \mathrm{R})+2=((((12 / / 6)+4) / / 8) / / \mathrm{R})+2=(((4+4) / / 8) / / \mathrm{R})+2=(4 \mathrm{R} /(4+\mathrm{R}))+2$
Version $\mathrm{A} ; \mathrm{R}=8 \mathrm{k} \Omega$, then $\mathrm{R}_{\mathrm{AB}}=4.7 \mathrm{k} \Omega$
Version $\mathrm{B} ; \mathrm{R}=12 \mathrm{k} \Omega$, then $\mathrm{R}_{\mathrm{AB}}=5 \mathrm{k} \Omega$
Version $C ; R=16 \mathrm{k} \Omega$, then $\mathrm{R}_{A B}=5.2 \mathrm{k} \Omega$

Problem 2 (4 pts)

Determine the power dissipated in the $\mathrm{R} \Omega$ resistor in the network shown below.

Node equation for V_{x}

$$
\begin{gathered}
\frac{V_{x}-12}{4}+\frac{V_{x}}{R}+\frac{V_{x}}{12}-2\left(\frac{12-V_{x}}{4}\right)=0 \\
\text { Solving for } V_{\mathrm{x}}, \text { we obtain } \\
V_{x}=108 *\left(\frac{R}{10 R+12}\right) \text { and } \operatorname{Pr}=\frac{\left(V_{x}\right)^{2}}{R}
\end{gathered}
$$

Version A: $\mathrm{R}=6 \Omega, \mathrm{Vx}=9$ Volts, and $P=\frac{V_{x}^{2}}{R}=13.5 \mathrm{~W}$
Version B: $\mathrm{R}=9 \Omega, \mathrm{Vx}=9.53$ Volts, and $P=\frac{V_{x}^{2}}{R}=10.1 \mathrm{~W}$
Version C: $\mathrm{R}=12 \Omega, \mathrm{Vx}=9.82$ Volts, and $P=\frac{V_{x}^{2}}{R}=8.04 \mathrm{~W}$

Problem 3 (4 pts)

Find v (voltage drop across the 25Ω resistor), when $v_{s}=15 \mathrm{~V}$.

Simplifying the above circuit, $(15||60+45|| 30+20)||50=(12+18+20)|| 50$ we obtain

Using Voltage divider rule, we obtain: $v=v_{s} \frac{25}{54}$
Version A: For $v_{s}=15 \mathrm{~V}$, then $v=6.94 \mathrm{~V}$
Version B: For $v_{s}=25 \mathrm{~V}$, then $v=11.57 \mathrm{~V}$
Version C: For $v_{s}=15 \mathrm{~V}$, then $v=6.94 \mathrm{~V}$
Problem 4 (4 pts)
Solve the circuit below, find \boldsymbol{v}_{o}. Take $\boldsymbol{v}_{s}=21 \mathrm{~V}$.

Grounding the negative terminal of the voltage source, the two nodal equations read:

$$
\begin{aligned}
& \frac{V_{A}-v_{S}}{20}+\frac{V_{A}}{40}+\frac{V_{A}-v_{0}}{30}=0 \\
& \frac{v_{0}-V_{a}}{30}+\frac{v_{0}}{50}+\frac{v_{0}-v_{s}}{50}=0
\end{aligned}
$$

Solving, we obtain
Version A: For $v_{s}=21, v_{0}=11.78 \mathrm{~V}$
Version B: For $v_{s}=24, v_{o}=13.46 \mathrm{~V}$
Version C: For $v_{s}=35, v_{0}=19.6 \mathrm{~V}$

Problem 5 (4 pts)

Find the power supplied/absorbed by the 3 V source

The current $\mathrm{i}_{4}=(5-3) / 4=0.5 \mathrm{~A}$. The Voltage $\mathrm{V}_{\mathrm{d}}=3$ volts. The current in the 2Ω resistor is 0 A . The current in the 6Ω resistor is 0.5 A .

Using KCL, the current leaving the 3 V source is 0 A . Therefore, the power associated with this source is 0 Watts .
The answer is: None of the above for all versions (0)

Problem 6 (7 pts)

We want to determine the value of I_{0} in the circuit shown below:

a. Write nodal equations for the node voltages V1 and V2. (2 pts)

$$
\begin{gather*}
\frac{V_{1}}{12}+\frac{V_{1}}{12}+\frac{V_{2}}{12}+\frac{V_{2}}{12}=0 \xrightarrow{\text { yields }} 2 V_{1}+2 V_{2}=0 \\
V_{1}-V_{2}=6 \tag{2}
\end{gather*}
$$

b. Solve for the node volatge V1 and V2. (1 pt)

$$
V_{1}=3 V \quad V_{2}=-3 V
$$

c. Deduce the current $\mathrm{I}_{0}(1 \mathrm{pt})$

$$
I_{0}=\frac{V_{2}}{12 * 1000}=-0.25 \mathrm{~mA}
$$

d. Resolve the circuit using mesh analysis and write the three mesh equations.(3 pt)

Mesh 1: $24 I_{1}-12 I_{2}+0 I_{3}=0$
Mesh 2: $-12 I_{1}+24 I_{2}-12 I_{3}=6$
Mesh 3: $0 I_{1}-12 I_{2}+24 I_{3}=0$
Solving 1, 2, and 3 yields: $I_{1}=0.25 \mathrm{~mA}, I_{2}=0.5 \mathrm{~mA}, I_{3}=0.25 \mathrm{~mA}$.
e. Verify the value of I_{0} obtained in (c). (1 pt)

Therefore $I_{0}=-I_{3}=-0.25 \mathrm{~mA}$

Problem 7 (6 pts)

We would like to find the value of V_{0} in the circuit below,

a. Write the node voltage equation. (3 pts)

$$
\begin{aligned}
& \frac{V_{a}}{6}+\frac{V_{a}-12}{6}+\frac{V_{a}-V_{b}}{6}=0 \\
& \frac{V_{b}-V_{a}}{6}+\frac{V_{b}}{6}+\frac{V_{b}-12}{6}=0
\end{aligned}
$$

b. Solve for voltages V_{a} and V_{b}. (2 pts)

$$
V_{a}=V_{b}=6 \mathrm{Volts}
$$

c. Deduce the value of $\mathrm{V}_{0}(1 \mathrm{pt})$

$$
V_{0}=V_{a}-V_{b}=0 \text { Volts }
$$

Problem 8 (5 pts)

We would like to find the value of V_{0} in the circuit below:

a. Would you use mesh or nodal analysis? Why? (1 pt)

Two nodes vs 3 branches. Nodal analysis.
b. Solve for V_{0} using the method you specified in a . (4 pts)

$$
\begin{gathered}
\frac{V_{1}-6}{2}+\frac{V_{1}}{4}+\frac{V_{1}-V_{2}}{4}=0 \\
\frac{V_{2}-V_{1}}{4}+\frac{V_{2}}{8}-2=0
\end{gathered}
$$

Solving, we obtain $\mathrm{V}_{1}=5.2$ Volts and $\mathrm{V}_{2}=8.8$ Volts .
Therefore, $\mathrm{V}_{0}=5.2-8.8=-3.6$ Volts

Problem 9 (6 pts)

Find R_{L} such that the voltage $\mathrm{Vo}=100$ Volts

Transform the Y in the middle to a Delta:

$$
\text { -> } R_{L}=2 R
$$

Problem 10 (6 pts)

If you are told that node c is a reference $\left(V_{c}=0\right.$ Volts).

a. Write nodal equations at nodes a and b. (3 pts)

$$
\begin{aligned}
& \frac{V_{a}-36}{1}+\frac{\left(V_{a}-V_{b}\right)}{2}-\beta I_{0}=0 \\
& \frac{\left(V_{b}-V_{a}\right)}{2}+\frac{\left(V_{b}-12\right)}{4}+\frac{\left(V_{b}\right)}{4}=0
\end{aligned}
$$

b. Find β such that $\mathrm{V}_{\mathrm{b}}=12$ Volts. (3 pts)
$\mathrm{I}_{\mathrm{o}}=\frac{\left(V_{b}\right)}{4}=3$ A. Solving for 1 and 2, we obtain: $\beta=-5$

OR from first principles:
$\mathrm{Vb}=12 \mathrm{~V}$, then $I_{4 \Omega}=0$, so $I_{a \rightarrow b}=I_{o}$; Now KCL at node a: $I_{a \rightarrow b}=\beta I_{o}+I_{36 V}$, then

$$
I_{36 V}=\frac{36-6 I_{o}}{1}=18 \mathrm{~A}
$$

So $\beta=\left(-18 / I_{o}\right)+1=-5$

