American University of Beirut Department of Electrical and Computer Engineering EECE 210 – Electric Circuits - Fall 2018 Quiz 1 Solutions

Problem 1 (4 pts)

If $R = 8 \text{ k}\Omega$, find the equivalent resistance, R_{AB} .

 $\begin{array}{l} R_{AB} = \ ((((((12//4)+9)//6)+4)//8)//R)+2 \\ R_{AB} = \ (((((3+9)//6)+4)//8)//R)+2 = \ ((((12//6)+4)//8)//R)+2 = \ (((4+4)//8)//R)+2 = (4R/(4+R))+2 \\ \text{Version A; } R = 8k\Omega, \text{ then } R_{AB} = 4.7 \text{ k}\Omega \\ \text{Version B; } R = 12 \text{ k}\Omega, \text{ then } R_{AB} = 5 \text{ k}\Omega \\ \text{Version C; } R = 16 \text{ k}\Omega, \text{ then } R_{AB} = 5.2 \text{ k}\Omega \end{array}$

Problem 2 (4 pts)

Determine the power dissipated in the R Ω resistor in the network shown below.

Node equation for V_x

$$\frac{V_x - 12}{4} + \frac{V_x}{R} + \frac{V_x}{12} - 2\left(\frac{12 - V_x}{4}\right) = 0$$

Solving for V_x, we obtain
 $V_x = 108 * \left(\frac{R}{10R + 12}\right)$ and $Pr = \frac{(V_x)^2}{R}$

Version A: R=6 Ω , Vx=9 Volts, and $P = \frac{V_x^2}{R} = 13.5$ W Version B: R=9 Ω , Vx=9.53 Volts, and $P = \frac{V_x^2}{R} = 10.1$ W Version C: R=12 Ω , Vx=9.82 Volts, and $P = \frac{V_x^2}{R} = 8.04$ W

Problem 3 (4 pts)

Find v (voltage drop across the 25 Ω resistor), when $v_s = 15$ V.

Simplifying the above circuit, (15||60+45||30+20)||50 = (12+18+20)||50 we obtain

Using Voltage divider rule, we obtain: $v = v_s \frac{25}{54}$

Version A: For $v_s = 15$ V, then v = 6.94 V Version B: For $v_s = 25$ V, then v = 11.57 V Version C: For $v_s = 15$ V, then v = 6.94 V

Problem 4 (4 pts)

Solve the circuit below, find v_o . Take $v_s = 21$ V.

Grounding the negative terminal of the voltage source, the two nodal equations read:

$$\frac{V_A - v_s}{20} + \frac{V_A}{40} + \frac{V_A - v_0}{30} = 0$$
$$\frac{v_0 - V_a}{30} + \frac{v_0}{50} + \frac{v_0 - v_s}{50} = 0$$

Solving, we obtain

Version A: For $v_s = 21$, $v_0 = 11.78$ V Version B: For $v_s = 24$, $v_0 = 13.46$ V Version C: For $v_s = 35$, $v_0 = 19.6$ V

Problem 5 (4 pts)

Find the power supplied/absorbed by the 3V source

The current $i_4=(5-3)/4=0.5$ A. The Voltage $V_d=3$ volts. The current in the 2Ω resistor is 0A. The current in the 6Ω resistor is 0.5 A.

Using KCL, the current leaving the 3V source is 0 A. Therefore, the power associated with this source is 0Watts.

The answer is: None of the above for all versions (0)

Problem 6 (7 pts)

We want to determine the value of I_0 in the circuit shown below:

a. Write nodal equations for the node voltages V1 and V2. (2 pts)

$$\frac{v_1}{12} + \frac{v_1}{12} + \frac{v_2}{12} + \frac{v_2}{12} = 0 \xrightarrow{\text{yields}} 2V_1 + 2V_2 = 0 \quad (1)$$
$$V_1 - V_2 = 6 \quad (2)$$

- b. Solve for the node volatge V1 and V2. (1 pt) $V_1 = 3 V \quad V_2 = -3 V$
- c. Deduce the current $I_0(1 \text{ pt})$

$$I_0 = \frac{V_2}{12 * 1000} = -0.25 \ mA$$

d. Resolve the circuit using mesh analysis and write the three mesh equations.(3 pt)

Mesh 1: $24I_1 - 12I_2 + 0I_3 = 0$ Mesh 2: $-12I_1 + 24I_2 - 12I_3 = 6$ Mesh 3: $0I_1 - 12I_2 + 24I_3 = 0$

Solving 1, 2, and 3 yields: $I_1 = 0.25$ mA, $I_2 = 0.5$ mA, $I_3 = 0.25$ mA.

e. Verify the value of I₀ obtained in (c). (1 pt) Therefore $I_0 = -I_3 = -0.25mA$

Problem 7 (6 pts)

We would like to find the value of V_0 in the circuit below,

a. Write the node voltage equation. (3 pts)

$$\frac{\frac{V_a}{6} + \frac{V_a - 12}{6} + \frac{V_a - V_b}{6} = 0}{\frac{V_b - V_a}{6} + \frac{V_b}{6} + \frac{V_b - 12}{6} = 0}$$

b. Solve for voltages V_a and V_b . (2 pts)

$$V_a = V_b = 6 Volts$$

c. Deduce the value of V_0 (1 pt)

$$V_0 = V_a - V_b = 0 Volts$$

Problem 8 (5 pts)

We would like to find the value of V_0 in the circuit below:

- a. Would you use mesh or nodal analysis? Why? (1 pt) Two nodes vs 3 branches. Nodal analysis.
- b. Solve for V_0 using the method you specified in a. (4 pts)

$$\frac{V_1 - 6}{2} + \frac{V_1}{4} + \frac{V_1 - V_2}{4} = 0$$
$$\frac{V_2 - V_1}{4} + \frac{V_2}{8} - 2 = 0$$

Solving, we obtain V1=5.2 Volts and V2=8.8 Volts . Therefore, V0=5.2 - 8.8 = - 3.6 Volts

Problem 9 (6 pts)

Find R_L such that the voltage Vo=100 Volts

Transform the Y in the middle to a Delta:

Problem 10 (6 pts)

If you are told that node c is a reference (V_c=0 Volts).

Write nodal equations at nodes a and b. (3 pts) a.

$$\frac{V_a - 36}{1} + \frac{(V_a - V_b)}{2} - \beta I_0 = 0$$
$$\frac{(V_b - V_a)}{2} + \frac{(V_b - 12)}{4} + \frac{(V_b)}{4} = 0$$

4

- b. Find β such that V_b=12 Volts. (3 pts)
 - $I_0 = \frac{(V_b)}{4} = 3$ A. Solving for 1 and 2, we obtain: $\beta = -5$

-+-4

OR from first principles:

2

Vb=12 V, then $I_{4\Omega} = 0$, so $I_{a \to b} = I_o$; Now KCL at node a: $I_{a \to b} = \beta I_o + I_{36V}$, then

$$I_{36V} = \frac{36 - 6I_o}{1} = 18A$$

So $\beta = (-18/I_o) + 1 = -5$